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[1] High‐precision U‐Pb geochronology by isotope dilution‐thermal ionization mass spectrometry is integral
to a variety of Earth science disciplines, but its ultimate resolving power is quantified by the uncertainties
of calculated U‐Pb dates. As analytical techniques have advanced, formerly small sources of uncertainty are
increasingly important, and thus previous simplifications for data reduction and uncertainty propagation are
no longer valid. Although notable previous efforts have treated propagation of correlated uncertainties for the
U‐Pb system, the equations, uncertainties, and correlations have been limited in number and subject to sim-
plification during propagation through intermediary calculations. We derive and present a transparent U‐Pb
data reduction algorithm that transforms raw isotopic data and measured or assumed laboratory parameters
into the isotopic ratios and dates geochronologists interpret without making assumptions about the relative
size of sample components. To propagate uncertainties and their correlations, we describe, in detail, a linear
algebraic algorithm that incorporates all input uncertainties and correlations without limiting or simplifying
covariance terms to propagate them though intermediate calculations. Finally, a weighted mean algorithm is
presented that utilizes matrix elements from the uncertainty propagation algorithm to propagate random and
systematic uncertainties for data comparison between other U‐Pb labs and other geochronometers. The linear
uncertainty propagation algorithms are verified with Monte Carlo simulations of several typical analyses. We
propose that our algorithms be considered by the community for implementation to improve the collaborative
science envisioned by the EARTHTIME initiative.
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1. Introduction

[2] U‐Pb geochronology by isotope dilution ther-
mal ionization mass spectrometry (ID‐TIMS) has
become the gold standard for calibrating geologic
time due to precisely determined uranium decay
constants, high‐precision measurement methods,
and an internal check for open‐system behavior
provided by the dual decay of 235U and 238U. Pre-
cise, accurate ID‐TIMS dates have been used to test
and calibrate detailed tectonic models [e.g., Schoene
et al., 2008], determine the timing and tempo of
mass extinctions and ecological recovery [Bowring
et al., 1998], calibrate a global geologic timescale
[Davydov et al., 2010], and establish a precise
chronology for the early solar system [Amelin et al.,
2002]. These results rely on analysis and interpre-
tation of precisely measured data, for which correct
and transparent data reduction and error propagation
are imperative.

[3] U‐Pb ID‐TIMS dates are measured by dissol-
ving a U‐bearing phase with a mixed isotopic tracer
enriched in isotopes of U and Pb, then purifying the
U and Pb from the resulting solution. The ratios of
Pb and U in the sample to those in the tracer are
measured precisely by TIMS to determine radio-
genic isotope ratios of U and Pb, which are used to
calculate dates. The relatively high precision of
ID‐TIMS dates stems from clean laboratory proto-
cols, which minimize the magnitude and uncertainty
of the laboratory blank correction, stable isotope
beams with per mil level isotopic fractionation,
which minimize measurement uncertainties, and
well‐characterized isotopic tracers, which leverage
the ability of the TIMS to accurately measure iso-
tope ratios. The accuracy of the most common
geochronometer, zircon, is greatly enhanced by the
chemical abrasion method, or CA‐TIMS [Mattinson,
2005], which minimizes or eliminates any correction
for loss of Pb.

[4] The last decade of developments in mass
spectrometry, clean laboratory protocols, and pre-
treatment of zircons has increased measurement
precision and decreased the magnitude of cor-
rections for common Pb (Pbc) and open system
behavior. However, the algorithms presently used
for U‐Pb data reduction and uncertainty propagation
still maintain many simplifications and omissions
better suited to past data sets. Furthermore, as
random sources of uncertainty, such as ion counting
statistics, have been reduced, systematic uncertain-
ties such as calibration of the isotopic tracer have
come to dominate the overall uncertainty budget.

Thus, the quality of data has outstripped the algo-
rithms for data reduction.

[5] Several recent interlaboratory comparisons
between established ID‐TIMS U‐Pb geochronology
labs have revealed statistically significant discrep-
ancies in measurements of the same samples. These
differences likely arise from the now dominant
systematic uncertainties, and represent a significant
impediment to data intercomparison in collaborative
science. In order to achieve the external reproduc-
ibility required by, for example timescale calibra-
tion, a common framework that transforms raw data
into geological interpretation and correctly propa-
gates systematic uncertainties is critical. The geo-
chronology community would be well served by
agreeing upon and adopting a universally accepted
data reduction and uncertainty propagation algo-
rithm for publishing and archiving data.

[6] Rather than modifying notable past data reduc-
tion and uncertainty propagation algorithms [e.g.,
Ludwig, 1980;Roddick, 1987; Schmitz and Schoene,
2007], this contribution rederives the governing
equations that transform the raw data and inputs
for U‐Pb ID‐TIMS geochronology into U‐Pb and
Pb‐Pb dates. The equations support dating U‐bearing
phases with and without initial common Pb, use of
several mixed U‐Pb tracers, and include corrections
for initial daughter isotope disequilibrium and for
time‐varying instrumental parameters like isotopic
fractionation.

[7] A novel algorithm for propagating the input
uncertainties precludes neglecting or simplifying
terms in the complicated expressions for the uncer-
tainty of U‐Pb dates, thus incorporating all known
sources of error. Utilizing matrices of covariance
terms and partial derivatives, the uncertainty prop-
agation algorithm also determines the statistical
relationships between the U‐Pb and Pb‐Pb dates and
is capable of breaking down the uncertainty contri-
butions from individual sources. Contributions to
the combined uncertainty from random and system-
atic components can then be propagated separately
for each analysis, including only those systematic
uncertainties necessary to compare data sets. This
algorithm is extensible, so that it can accommodate
future improvements in analytical methods and the
uncertainty correlations arising from tracer calibra-
tions or intercalibrated U decay constants.

[8] Data reduction and uncertainty propagation
algorithms are packaged in the open‐source,
publicly distributed program U‐Pb_Redux, which
includes a laboratory workflow manager and an
interactive graphical user interface that performs
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statistical calculations and plotting [Bowring et al.,
2011]. U‐Pb_Redux is also capable of exporting
all of the calculated dates, interpretations, and sup-
porting data to an online database, then downloading
data sets for further interpretation and compilation
with new data from multiple users. Community
adoption of a common, transparent algorithm like
the one in U‐Pb_Redux would ensure that data from
different users in different labs can be compared and
combined.

2. U‐Pb Data Reduction

[9] A number of corrections and calculations are
required to transform measured isotopic ratios and
lab parameters into meaningful isotopic dates, as
illustrated in Figure 1. If isobaric interferences are
present, they must be measured and subtracted
before each isotope ratio is corrected for instru-
mental mass fractionation, or mass bias, caused
by lighter isotopes evaporating and ionizing more
easily than heavier isotopes. The numerator and
denominator of a measured, corrected isotope ratio
then represent mixtures of multiple components: the
parent or radiogenic daughter isotope; the isotopic
tracer used; common Pb and U added during labo-
ratory procedures, known as laboratory blank; and
if present, initial common Pb incorporated during
crystallization of the phase (Figure 2).

[10] There are three ways to calculate isotopic dates
from fractionation‐ and interference‐corrected ratios.

If the isotopic composition (IC) of the common Pb
components are known, they may be subtracted
along with the tracer contribution to directly deter-
mine radiogenic isotope ratios; along with appro-
priate decay constants, these determine the isotopic
date. Alternatively, after subtracting the estimated
laboratory blank and isotopic tracer contributions,
the resulting isotope ratios may represent variable
mixtures of a single initial common Pb isotopic
composition and an amount of radiogenic Pb pro-
portional to the amount of parent isotope present.
Assuming a closed system, both the sample date and
the isotopic composition of the initial common Pb
can be calculated using an isochron technique.
Finally, a linear regression through discordant U‐Pb
analyses can be extrapolated to concordia intercepts
that may be interpreted in terms of a single episode
of open system behavior.

[11] This section explores the inputs required and
the mechanism used for accurate U‐Pb data reduc-
tion. Text accompanying each equation in the data
reduction algorithm explains its applicability and
purpose.

2.1. Inputs

[12] A weighted mean, isochron, or concordia
intercept date is calculated from a number of paired
U and Pb analyses, here termed ‘fractions’ [Bowring
et al., 2011]. Examples include single mineral grains
or grain fragments, as well as a bulk leach or a whole

Figure 1. Diagrammatic representation of the data reduction algorithm. Data reduction begins with the input param-
eters in the boxes at left. Sections 2.2.1 and 2.2.3 describe how the blank and tracer parameters are combined to calculate
their molar abundances. These are then used to correct the measured ratios in sections 2.2.2 and 2.2.4 in order to
determine the moles of parent Pb and radiogenic U, respectively. Finally, sections 2.2.5 and 2.2.6 calculate radiogenic
U/Pb ratios and, using the isotopic decay constants, isotopic dates.
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rock analysis. Between twenty and forty separate
input variables are required to calculate an isotopic
date for each fraction, and each is described below.
These inputs, as well as the symbols used to repre-
sent them in the following data reduction algorithm,
are listed in Tables 1–3.

[13] All data must be reduced with a self‐consistent
set of physical constants, such as decay constants
and atomic masses. Decay constants used for iso-
topic date calculation and disequilibrium correction
include those for 231Pa, 230Th, 232Th, 235U, and
238U. The atomic masses of the isotopes, which are
the only inputs not assigned an uncertainty, are used
to convert between masses and moles of elements
or isotopes.

[14] An isotopic tracer is a mixture of well‐
determined quantities of enriched isotopes. The equa-
tions presented here apply to the most commonly
used isotopic tracers for U‐Pb ID‐TIMS geochro-
nology, which are enriched in either 205Pb or both
202Pb and 205Pb, as well as either 235U, both 233U
and 235U, or both 233U and 236U. In addition to the
enriched isotopes, tracer solutions inevitably contain
minor amounts of other naturally occurring isotopes,
whose proportions must be known for full charac-
terization of the U and Pb IC of the tracer. Finally,
isotope dilution calculations utilize the concentra-
tions of the artificial Pb and U isotopes (Table 2).

[15] Fractions analyzed on the same mass spec-
trometer with the same laboratory procedures will
have additional parameters in common. For ele-
ments with at least two enriched isotopes present in

Figure 2. Cartoon illustrating the relative contributions
of Pb and U sample components for typical U‐Pb ID‐
TIMS analyses, broken down by isotope. Column heights
are not shown to scale. (a) Relative abundance of Pb iso-
topes in a phase that incorporates initial common Pb
(Pbc). Determination of the radiogenic 206Pb, 207Pb, and
208Pb shown in red requires subtracting the tracer, blank,
and initial Pbc contributions from the top of each column.
The tracer contribution is estimated from the 205Pb abun-
dance and the tracer isotopic composition (IC), and the Pb
blank contribution is estimated laboratory measurements.
The remaining 204Pb is assumed to be initial Pbc; its con-
tributions to the radiogenic isotopes are subtracted using
the initial Pbc IC, leaving only the radiogenic component.
(b) For a phase with no initial Pbc, only tracer and blank
contributions need to be subtracted to determine the
radiogenic component. The 204Pb contribution from the
tracer is subtracted first using the 205Pb abundance of
the tracer, and the remaining 204Pb is assumed to be lab-
oratory Pb blank. Subtracting the blank contributions to
206Pb, 207Pb, and 208Pb using the blank IC yields their
radiogenic components. (c) Relative abundance of U iso-
topes. The isotopic tracer may contain any combination of
233U, 235U, and/or 236U. The tracer, blank, and sample U
contributions to each isotope are deconvolved by solving
a system of equations that incorporates the IC of each.

Table 1. Measured Isotope Ratios

Pb U or Uoxide
204Pb
205Pb

� �
meas

233U
235U

� �
meas or

265UO2
267UO2

� �
meas

206Pb
205Pb

� �
meas

238U
235U

� �
meas or

270UO2
267UO2

� �
meas

207Pb
205Pb

� �
meas

233U
236U

� �
meas or

265UO2
268UO2

� �
meas

208Pb
205Pb

� �
meas

238U
236U

� �
meas or

270UO2
268UO2

� �
meas

202Pb
205Pb

� �
meas

Table 2. Isotopic Tracer Parameters

Pb IC U IC Tracer Calibration
204Pb
205Pb

� �
tr

233U
235U

� �
tr

205Pb
235U

� �
tr

206Pb
205Pb

� �
tr

238U
235U

� �
tr conc(205Pb)tr

207Pb
205Pb

� �
tr

233U
236U

� �
tr conc(235U)tr

208Pb
205Pb

� �
tr masstr

202Pb
205Pb

� �
tr
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the tracer, isotopic fractionation during each run can
be calculated either on average or point‐by‐point by
comparing the known ratio to the measured ratio
(see sections 2.2.1.1, 2.2.4.1, and 2.2.4.3). However,
if only one enriched isotope is present (e.g., a single
205Pb or 235U tracer), the magnitude and variability
of mass‐dependent fractionation must be assessed
by repeated analyses of a standard for input to data
reduction. A linear fractionation law is used here for
ID‐TIMS analyses, which is virtually indistinguish-
able from an exponential or power law correction
at low (ca. 0.1% per u) magnitudes of isotopic
fractionation.

[16] Two methods to allocate common Pb are
implemented in U‐Pb_Redux. The first assumes that
all common Pb (Pbc) in the analysis is laboratory
blank. This assumption is justified when total pro-
cedural blankmeasurements are the samemagnitude
as the total common Pb measurements of analyses,
as demonstrated for chemically abraded zircon [e.g.,
Davydov et al., 2010]. The laboratory blank isotopic
composition should be measured for each sample
preparation procedure (e.g., HCl‐ vs. HBr‐based
anion exchange chemistry), then subtracted from
each analysis, as described in sections 2.2.1.3 and
2.2.1.2.

[17] When the dated phase contains initial common
Pb, its IC can be determined in one of three ways.
With no a priori knowledge, a terrestrial Pb ore
model like that of Stacey and Kramers [1975] or
Cumming and Richards [1975] can be used to esti-
mate its IC, using the approximate age of the sample.
Leaching experiments on comagmatic low‐Uphases
such as alkali feldspar, if present, can precisely
determine the initial common Pb IC [Housh and
Bowring, 1991]. Finally, if several fractions formed
closed systems at the same time, share the same
initial Pb isotopic composition, and remained closed
systems until analysis, then an isochron approach

may be used to solve for both their initial common
Pb IC and date simultaneously.

[18] Several additional parameters are needed to
reduce U data (Table 3). Unless it has been deter-
mined independently, the user must specify the
238U/235U ratio of the sample. Canonically, this
value has been accepted as 137.88 [Steiger and
Jager, 1977], but recent studies have shown that it
may vary significantly in nature [Stirling et al.,
2007; Weyer et al., 2008; Brennecka et al., 2010].
The mass and the 238U/235U ratio of the U blank are
also necessary. Finally, if the U is measured as a
UO2

+ species with a mixed 233U‐235U tracer, the
18O/16O ratio of the uranium oxide is used to correct
for the isobaric interferences of 233U16O18O or
233U16O18O on 235U16O16O.

[19] Initial isotopic disequilibrium in either the 238U
or 235U decay chains can result in systematic errors
due to excess or deficit radiogenic daughter. In U‐Pb
geochronology, it is often assumed that the magma
from which the dated phase crystallized was close to
secular equilibrium. As the phase crystallizes, it may
preferentially incorporate or exclude an intermediate
daughter element from the 238U or 235U decay chain.
For instance, monazite preferentially incorporates
230Th in the 238U decay chain [Schärer, 1984], while
zircon excludes it [Mattinson, 1973], resulting in
enrichment or depletion in 206Pb, respectively.
The magnitude of the disequilibrium correction is
modeled using the 208Pb content of a mineral to
determine its Th/U ratio, then comparing to a user
input Th/U ratio of the magma. Another long‐lived
intermediate daughter isotope is 231Pa, in the 235U
decay chain. Because there is no abundant long‐
lived Pa isotope, the initial 231Pa/235U activity ratio
or the ratio of Pa and U distribution coefficients
must be input by the user to make this correction,
described in Appendix A.

[20] Although multiple analyses may share many of
the above parameters, each will have a unique set of
measured Pb and U ratios. The measured ratios are
the same as those needed for tracer characterization:
the ratio of each naturally occurring isotope to a
tracer isotope, and if multiple enriched isotopes are
present, their ratio to one another (Table 1). The
mass of tracer solution added to the analysis before
measurement is also required to calculate the molar
quantities of the sample and tracer isotopes.

2.2. Data Reduction

[21] The algorithm that transforms the input para-
meters into isotopic dates can be broken down into

Table 3. Laboratory and Sample Parameters

Pb Blank Initial Pbc Uranium
206Pb
204Pb

� �
bl

206Pb
204Pb

� �
com

238U
235U

� �
spl

207Pb
204Pb

� �
bl

207Pb
204Pb

� �
com

238U
235U

� �
bl

208Pb
204Pb

� �
bl

208Pb
204Pb

� �
com

18O
16O

� �
Uox

mass(Pb)bl tPbc mass(U)bl

Fractionation
Correction

Disequilibrium
Correction

Physical Constants

aPb (ThU )magma l238, l235, l232, l231, l230

aU
231Pa
235U

h i
spl

grams 204Pbð Þ
mole 204Pbð Þ

� �
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three stages: Pb calculations, U calculations, and
isotopic date determination. Each category entails
calculation of multiple intermediate parameters,
and the algorithm depends upon the tracer used
and whether or not initial common Pb is present.
Figure 1 illustrates the data reduction algorithm as a
flow chart, with numbered ovals corresponding to
the text section where each calculation appears.

2.2.1. Pb Calculations

[22] The Pb calculations are detailed in the top left
panel of Figure 1 and the ovals contain section
references to the text that follows.

2.2.1.1. Tracer

[23] Isotope dilution uses a known quantity of a
synthetic tracer isotope to determine the unknown
amount of sample present. 205Pb is ubiquitously
used as the artificially enriched Pb isotope, and its
abundance can be calculated from the measured
mass of the tracer and its known concentration of
205Pb.

moles 205Pb
� �

tr
¼ conc 205Pb

� �
tr
� masstr ð1Þ

[24] If a 202Pb‐205Pb tracer is used, the linear isotopic
fractionation factor aPb is proportional to the differ-
ence between the measured and true 202Pb/205Pb
ratios.

�Pb ¼ 1

3
1�

202Pb
205Pb

� 	
tr


 202Pb
205Pb

� 	
meas

� �
ð2Þ

If a tracer containing only 205Pb is used, then aPb

must be determined from repeated measurements of
an isotopic standard, such as NBS981 or NBS982,
or from other analyses with the 202Pb‐205Pb tracer.

[25] Because 204Pb is has no radiogenic component,
the fractionation‐corrected 204Pb/205Pb ratio can be
used to determine the mass of common Pb (Pbc).
Figure 2 illustrates the relationship between sample
Pb components.

204Pb
205Pb

� 	
fc

¼
204Pb
205Pb

� 	
meas

� 1� �Pbð Þ ð3Þ

2.2.1.2. Laboratory Blank and Initial Common Pb

[26] If initial common Pb is present, then the 204Pb in
the analysis must be apportioned between tracer,
laboratory blank, and initial common Pb contribu-
tions. These relative contributions are illustrated in
Figure 2a. When the isotopic composition of the
initial common Pb has not been or cannot be mea-

sured directly, a popular alternative, albeit imper-
fect, is to use a Pb ore evolutionmodel such as that of
Stacey and Kramers [1975], which is reproduced
in Appendix A.

[27] When initial common Pb is present, the total
common Pb is apportioned by assuming the mass of
the laboratory Pb blank, usually an average of sev-
eral contemporaneous total procedural blank mea-
surements. To calculate the moles of each isotope
present from its mass and isotopic composition, it is
helpful to first calculate the grams of laboratory Pb
blank per mole of 204Pb in the blank:

grams Pbð Þ
mole 204Pbð Þ
� �

bl

¼ grams 204Pbð Þ
mole 204Pbð Þ þ

206Pb
204Pb

� 	
bl

� grams
206Pbð Þ

mole 206Pbð Þ þ
207Pb
204Pb

� 	
bl

� grams
207Pbð Þ

mole 207Pbð Þ

þ
208Pb
204Pb

� 	
bl

� grams
208Pbð Þ

mole 208Pbð Þ ð4Þ

[28] The moles of 204Pb in the laboratory blank can
now be determined from the blank mass input by
the user,

moles 204Pb
� �

bl
¼ mass Pbð Þbl



grams Pbð Þ
mole 204Pbð Þ
� �

bl

ð5Þ

and the moles 206Pb, 207Pb, and 208Pb in the labo-
ratory blank are computed using (5) and the Pb
blank IC.

moles 206Pb
� �

bl
¼

206Pb
204Pb

� �
bl
�mass Pbð Þbl

grams Pbð Þ
mole 204Pbð Þ
h i

bl

ð6Þ

moles 207Pb
� �

bl
¼

207Pb
204Pb

� �
bl
�mass Pbð Þbl

grams Pbð Þ
mole 204Pbð Þ
h i

bl

ð7Þ

moles 208Pb
� �

bl
¼

208Pb
204Pb

� �
bl
�mass Pbð Þbl

grams Pbð Þ
mole 204Pbð Þ
h i

bl

ð8Þ

[29] The total molar quantity of 204Pb from common
Pb, composed of both initial common Pb and labo-
ratory blank, is the total moles of 204Pb analyzed
minus the contribution from the tracer.

moles 204Pb
� �

tc ¼ moles 205Pb
� �

tr �
204Pb
205Pb

� 	
fc

�
204Pb
205Pb

� 	
tr

" #

ð9Þ
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[30] Because the total common Pb is composed of
laboratory blank Pb and initial Pbc, the additional
204Pbc in excess of the laboratory blank is assumed
to be initial Pbc.

moles 204Pbð Þcom¼ moles 204Pbð Þtc �moles 204Pbð Þbl ð10Þ

[31] The initial Pbc contributions to other Pb iso-
topes can be calculated from the initial 204Pbc using
the initial common Pb IC determined by the user or
from a model, such as equations (A25) to (A30).

moles 206Pb
� �

com
¼

206Pb
204Pb

� 	
com

� moles 204Pb
� �

com
ð11Þ

moles 207Pb
� �

com
¼

207Pb
204Pb

� 	
com

� moles 204Pb
� �

com
ð12Þ

moles 208Pb
� �

com
¼

208Pb
204Pb

� 	
com

� moles 204Pb
� �

com
ð13Þ

2.2.1.3. Laboratory Blank, No Initial Common Pb

[32] When the dated phase incorporates no initial
common Pb, the moles of 204Pb in the laboratory
blank can be expressed as the total moles of 204Pb in
the analysis minus any contribution from the tracer
(Figure 2b). The moles of 204Pb in the laboratory
blank, along with its average isotopic composition,
are then used to calculate the moles of 206Pb, 207Pb,
and 208Pb in the laboratory blank.

moles 204Pb
� �

bl
¼ moles 205Pb

� �
tr
�

204Pb
205Pb

� 	
fc

�
204Pb
205Pb

� 	
tr

" #

ð14Þ

moles 206Pb
� �

bl
¼ moles 205Pb

� �
tr
�

206Pb
204Pb

� 	
bl

�
204Pb
205Pb

� 	
fc

�
204Pb
205Pb

� 	
tr

" #
ð15Þ

moles 207Pb
� �

bl
¼ moles 205Pb

� �
tr
�

207Pb
204Pb

� 	
bl

�
204Pb
205Pb

� 	
fc

�
204Pb
205Pb

� 	
tr

" #
ð16Þ

moles 208Pb
� �

bl
¼ moles 205Pb

� �
tr
�

208Pb
204Pb

� 	
bl

�
204Pb
205Pb

� 	
fc

�
204Pb
205Pb

� 	
tr

" #
ð17Þ

The total mass of laboratory blank Pb, frequently
reported in data tables, should be calculated from the

moles of Pb isotopes in the blank and their gram
atomic masses.

2.2.2. Radiogenic and Sample Pb

[33] The tracer IC, along with the moles of labora-
tory blank and initial Pbc, provide enough infor-
mation to determine the radiogenic components of
206Pb, 207Pb, and 208Pb in the analysis. First, the
measured ratios of Pb isotopes relative to 205Pb in
the tracer are fractionation corrected, and the tracer
contribution is subtracted. Multiplying this by the
moles of 205Pb in the tracer gives the molar quantity
of each Pb isotope in the sample, from which the Pb
blank and initial Pbc components are subtracted.

moles 206Pb
� �

rad
¼ moles 205Pb

� �
tr

�
206Pb
205Pb

� 	
meas

� 1þ �Pbð Þ �
206Pb
205Pb

� 	
tr

� �
� moles 206Pb

� �
bl
�moles 206Pb

� �
com

ð18Þ

moles 207Pb
� �

rad
¼ moles 205Pb

� �
tr

�
207Pb
205Pb

� 	
meas

� 1þ 2�Pbð Þ �
207Pb
205Pb

� 	
tr

� �
� moles 207Pb

� �
bl
�moles 207Pb

� �
com

ð19Þ

moles 208Pb
� �

rad ¼ moles 205Pb
� �

tr

�
208Pb
205Pb

� 	
meas

� 1þ 3�Pbð Þ �
208Pb
205Pb

� 	
tr

� �
� moles 208Pb

� �
bl
�moles 208Pb

� �
com

ð20Þ

[34] If an isochron technique is employed, the initial
Pbc isotopic composition for a group of fractions is
calculated or constrained at the same time as their
date. Only the common Pb from the laboratory blank
and tracer should be subtracted in this case, leaving
the mass of each isotope of Pb from the sample.

moles 206Pb
� �

spl ¼ moles 205Pb
� �

tr

�
206Pb
205Pb

� 	
meas

� 1þ �Pbð Þ �
206Pb
205Pb

� 	
tr

� �
� moles 206Pb

� �
bl

ð21Þ

moles 207Pb
� �

spl
¼ moles 205Pb

� �
tr

�
207Pb
205Pb

� 	
meas

� 1þ2�Pbð Þ�
207Pb
205Pb

� 	
tr

� �
� moles 207Pb

� �
bl

ð22Þ

moles 208Pb
� �

spl
¼ moles 205Pb

� �
tr

�
208Pb
205Pb

� 	
meas

� 1þ3�Pbð Þ�
208Pb
205Pb

� 	
tr

� �
� moles 208Pb

� �
bl

ð23Þ
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2.2.3. U Calculations

[35] The U calculations are detailed in the bottom
left panel of Figure 1 and the ovals contain section
references to the text that follows.

2.2.3.1. Oxide Correction

[36] Uranium is commonly measured by TIMS in
two forms, as a metal (U+) species, or as an oxide
(UO2

+). Although the oxide species ionizes more
efficiently, it introduces possible isobaric interfer-
ences. About 99.8% of oxygen is 16O and 0.2% is
18O. Using a mixed 233U‐235U tracer, the 18O creates
a significant isobaric interference: 233U18O16O
(mass = 267) on 235U16O16O (mass = 267). Because
both U18O16O and U16O18O permutations are pos-
sible, the 233UO2with one

18Owill be approximately
(0.2% 18O abundance) × (2 UO2 permutations) =
0.4% as abundant as 233U16O16O. The precise cor-
rection depends on the 18O/16O in the UO2

+ species,
which can be measured during the analysis on high‐
intensity ion beams, or inferred for smaller samples
from the mean value of the larger runs.

[37] Because the isobaric interference is underneath
the 235U peak, both the measured 238U/235U oxide
(mass 270/267) and 233U/235U oxide (mass 265/267)
ratios must be corrected.

233U
235U

� 	
oc

¼
265UO2
267UO2

� �
meas

1� 2
18O
16O

� �
Uox

� 265UO2
267UO2

� �
meas

ð24Þ

238U
235U

� 	
oc

¼
270UO2
267UO2

� �
meas

1� 2
18O
16O

� �
Uox

� 265UO2
267UO2

� �
meas

ð25Þ

2.2.3.2. U Blank and Tracer Masses

[38] Regardless of the tracer used, the mass of both
the U blank and tracer contributions are calculated
from their input masses and isotopic compositions.

moles 235U
� �

bl
¼ mass Uð Þbl

grams 235Uð Þ
mole 235Uð Þ þ

238U
235U

� �
bl
� grams 238Uð Þ

mole 238Uð Þ
ð26Þ

moles 238U
� �

bl
¼

238U
235U

� 	
bl

�moles 235U
� �

bl
ð27Þ

moles 235U
� �

tr
¼ conc 235U

� �
tr
�masstr ð28Þ

moles 238U
� �

tr
¼

238U
235U

� 	
tr

�moles 235U
� �

tr
ð29Þ

[39] If the tracer contains the synthetic isotope
233U, then its molar quantity must also be calculated
before determining the radiogenic components of
the sample.

moles 233U
� �

tr
¼

233U
235U

� 	
tr

�moles 235U
� �

tr
ð30Þ

2.2.4. Simultaneous Fractionation Correction
and Isotope Dilution

2.2.4.1. Fractionation Correction and Isotope

Dilution for a Mixed 233U‐235U Tracer

[40] Using a mixed 233U‐235U tracer, such as the
EARTHTIME‐distributed ‘ET535 tracer’, requires
simultaneous fractionation correction and isotope
dilution, and blank and tracer subtraction calcula-
tions. This yields an expression for both the amount
of parent U present and the linear fractionation
factor aU.

[41] To begin, the contributions to the three mea-
sured U isotopes are (Figure 2)

moles 233U
� �

tot
¼ moles 233U

� �
tr

ð31Þ

moles 235U
� �

tot
¼ moles 235U

� �
tr
þmoles 235U

� �
bl

þ moles 235U
� �

spl
ð32Þ

moles 238U
� �

tot
¼ moles 238U

� �
tr
þmoles 238U

� �
bl

þ moles 238U
� �

spl
ð33Þ

[42] After fractionation correction, the oxide‐
corrected ratios in (24) and (25) or the 233U/235U and
238U/235U ratios measured as a metal represent the
molar ratios of the quantities in equations (31) and
(33) to those in (32).

233U
235U

� 	
oc

� 1� 2 �Uð Þ ¼ moles 233U
� �

tr

.
moles 235U

� �
tr

h
þ moles 235U

� �
bl þ moles 235U

� �
spl

i
ð34Þ

238U
235U

� 	
oc

� 1þ 3 �Uð Þ ¼ moles 238U
� �

tr
þmoles 238U

� �
bl

h
þ moles 238U

� �
spl

i.
moles 235U

� �
tr

h
þ moles 235U

� �
bl

þ moles 235U
� �

spl

i
ð35Þ

[43] The two equations (34) and (35) have three
unknowns, aU and the moles of 235U and 238U. The
rest of the terms are defined in equations (26) to (30).
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To eliminate a variable, the moles of 238U can be
expressed as the moles of 235U multiplied by
the 238U/235U of the sample. Making this substi-
tution and solving the system of equations for the
moles of 235U in the sample and aU yields

moles 235U
� �

spl
¼ 3

238U
235U

� 	
oc

. 233U
235U

� 	
oc

� moles 233U
� �

tr

�

� 5
238U
235U

� 	
oc

� moles 235U
� �

bl
þ moles 235U

� �
tr

� �

þ 2 moles 238U
� �

bl þ moles 238U
� �

tr

� ��
.

5
238U
235U

� 	
oc

� 2
238U
235U

� 	
spl

" #
ð36Þ

[44] The moles of 238U in the sample can now be
determined using the 238U/235U ratio of the sample.

moles 238U
� �

spl
¼ moles 235U

� �
spl

�
238U
235U

� 	
spl

ð37Þ

[45] Although the solution to the system of equa-
tions in (34) and (35) yields an expression for aU,
a simpler expression is obtained by substituting the
moles of 235U in the sample derived in (36) into
equation (34), then solving for aU.

�U ¼ 1

2
� moles 233U

� �
tr

.
2

233U
235U

� 	
oc

� moles 235U
� �

spl

��

þ moles 235U
� �

tr
þmoles 235U

� �
bl

��
ð38Þ

2.2.4.2. Fractionation Correction and Isotope

Dilution for a Single 235U Tracer

[46] As with Pb, fractionation for a single‐isotope
tracer must be determined by repeated analyses of
a standard. For U isotope measurements by TIMS,
a single 235U tracer is most common, with isotopic
fractionation determined by repeated analysis of
CRM U500. Only the 238U/235U ratio is measured,
no oxide correction is needed, and the components
of 238U and 235U are given by equation (35). Rep-
resenting the sample 238U as the moles of 235U
multiplied by the 238U/235U of the sample, the
resulting equation may be solved for the moles
of 235U.

moles 235U
� �

spl
¼
�
moles 238U

� �
bl
þ moles 238U

� �
tr

�
238U
235U

� 	
meas

1þ 3�Uð Þ moles 235U
� �

bl þ moles 235U
� �

tr

� ��
. 238U

235U

� 	
meas

1þ 3�Uð Þ �
238U
235U

� 	
spl

" #
ð39Þ

[47] The moles of 238U is calculated with
equation (37).

2.2.4.3. Fractionation Correction and Isotope

Dilution for a Mixed 233U‐236U Tracer

[48] Using a mixed 233U‐236U tracer, the magnitude
of isotopic fractionation aU can be determined for
each ratio measured, or on the mean of the measured
ratios.

�U ¼ 1

3
1�

233U
236U

� 	
tr


 233U
236U

� 	
meas

� �
ð40Þ

[49] The moles of 236U in the tracer is equal to the
concentration of 236U in the tracer multiplied by the
measured tracer mass,

moles 236U
� �

tr
¼ conc 236U

� �
tr
� masstr ð41Þ

[50] If the U is analyzed as an oxide species, then the
measured 238U/236U requires oxide correction for
the isobaric interference of 236U18O16O (mass 270)
on 238U16O16O (mass 270), analogous to the case
presented in section 2.2.3.1 for a 233U‐235U tracer.
Neglecting the insignificant isobaric interference
of 235U17O16O on 236U16O16O because the tracer
and sample 235U and the 17O abundances are all
relatively small, the oxide‐corrected uranium ratios
become

233U
236U

� 	
oc

¼
265UO2
268UO2

� 	
meas

ð42Þ

238U
236U

� 	
oc

¼
270UO2
268UO2

� 	
meas

� 2
18O
16O

� 	
ð43Þ

where the result of equation (42) can be used to
calculate the magnitude of isotopic fractionation
in equation (40).

[51] Using the 238U/236U measured as a metal or
oxide‐corrected in equation (43) and solving for the
moles of 238U in the sample yields

moles 238U
� �

spl
¼ moles 236U

� �
tr
�

238U
236U

� 	
meas

1þ 2 �Uð Þ
�

�
238U
236U

� 	
tr

�
� moles 238U

� �
bl

ð44Þ

where the moles of 238U in the blank is calculated
with equation (27).
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[52] The moles of 235U in the sample is then deter-
mined using the 238U/235U of the sample,

moles 235U
� �

spl
¼ moles 238U

� �
spl


 238U
235U

� 	
spl

ð45Þ

2.2.5. Calculation of Isotopic Ratios

[53] Radiogenic isotope ratios, whose components
have been corrected for fractionation and inter-
ferences as well as blank and tracer contributions,
are used to calculate radiogenic isotope dates. They
are also used for plotting conventional (Wetherill)
and Tera‐Wasserburg‐type concordia diagrams.

207Pb
206Pb

� 	
rad

¼ moles 207Pbð Þrad
moles 206Pbð Þrad

ð46Þ

206Pb
238U

� 	
rad

¼ moles 206Pbð Þrad
moles 238Uð Þspl

ð47Þ

207Pb
235U

� 	
rad

¼ moles 207Pbð Þrad
moles 235Uð Þspl

ð48Þ

2.2.6. Isotopic Dates

[54] A radiogenic isotope date for either the 238U or
235U system can be derived by solving the isotopic
decay equation, D/P = elt − 1 for t, the time elapsed,
where D/P is the present radiogenic daughter to
parent ratio.

t206=238 ¼ 1

�238
log

206Pb
238U

� 	
rad

þ 1

� �
ð49Þ

t207=235 ¼ 1

�235
log

207Pb
235U

� 	
rad

þ 1

� �
ð50Þ

[55] To calculate a 207Pb/206Pb date, it is not possible
to solve

207Pb
206Pb

� 	
rad

¼
238U
235U

� 	�1

spl

� exp �235 � t207=206
� �� 1

exp �238 � t207=206
� �� 1

ð51Þ

directly for t. Instead, Newton’sMethod, an iterative
numerical solution, is used by U‐Pb_Redux.

[56] Equations to correct the isotopic dates for ini-
tial daughter isotope disequilibrium are derived in
Appendix A.

2.2.7. Isochron Ratios and Dates

[57] Alternatively, an isochron approach uses sam-
ple isotope ratios that incorporate an initial Pbc
component (equations (21) to (23)) to determine

both the isotopic date and the common Pb IC. Both
two‐axis plots, common in meteorite and carbonate
U‐Pb studies [e.g.,Patterson, 1956;Moorbath et al.,
1987], and three axis plots [Ludwig, 1998] that make
optimum use of both U decay schemes are used.

[58] Isotopic ratios popularly used in isochron calcu-
lations include 207Pb/206Pb, 204Pb/206Pb, 238U/206Pb,
204Pb/207Pb, 238U/207Pb, 235U/207Pb, 238U/204Pb,
and 235U/204Pb, which may be calculated using the
equations for sample molar quantities above.

3. Uncertainty Propagation Principles

[59] In the terminology of metrology, uncertainty
and error have different meanings. The uncertainty
of a measured parameter refers to the dispersion of
the values that could reasonably be attributed to it
[BIPM et al., 2008a], while an error is the difference
between the true (but unknown) value and the mea-
sured value.

[60] Uncertainty propagation transforms a set of
several inputs, with their associated uncertainties,
into the uncertainties in one or more outputs. This
transformation depends upon the values and uncer-
tainties of the inputs as well as the sensitivity of the
output(s) to them. There are several algorithms that
can perform this transformation, but the most pop-
ular are linear uncertainty propagation and the
Monte Carlo method (MCM).

[61] Linear uncertainty propagation approximates
functions in the neighborhood of their observed
value by their derivative, and uses the observed
values and uncertainties, assumed to be normally
distributed, to find the maximum likelihood estimate
of the output value. Instead of making these assump-
tions, the MCM uses many simulations of the uncer-
tain value of each input to propagate their probability
distribution through the data reduction equations,
directly determining the expected distribution of the
output. Although the MCM makes fewer assump-
tions, it requires 105 to 106 iterations and can thus be
slow to implement for large data sets [BIPM et al.,
2008b]. For precisely measured data, the linear
approximation returns the same quality result in
significantly less time, as demonstrated in section 6.
U‐Pb_Redux uses this approach in order to reduce
large data sets and drive interactive visualizations.

3.1. Determining the Uncertainties
of Inputs

[62] Uncertainties in ID‐TIMS measurements ulti-
mately derive from either mass determinations with
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a balance (e.g., themass of the tracer or themasses of
the isotopic reference materials used to make
gravimetrically calibrated solutions) or from isotope
ratio determinations made with a TIMS. For routine
ID‐TIMS analyses, mass determinations contribute
only negligibly to the analytical uncertainty budget,
and isotope ratio determinations contribute most.
There are three common techniques for measuring
isotope ratios with TIMS: with a static array of
Faraday collectors, by a single ion counting detector
such as a Daly or SEM (secondary electron multi-
plier), or with a combination of the two, and mea-
surement uncertainty derives from different sources
with each technique.

[63] A fixed array of Faraday collectors at unit
mass spacing can be used to measure very large
(>∼100 pg) Pb* samples and average‐size (>∼1 ng)
U samples as either metal (U+) or oxide (UO2

+)
species. Static measurements using Faraday detec-
tors have the advantage of measuring all isotopes
simultaneously. However, the amplifier circuits con-
taining large (1011 or 1012 W) resistors that are used
to measure the ion beam supply some small but
constant Johnson‐Nyquist (thermal) noise to each
signal, in addition to the ‘shot’ noise proportional
to the ion beam intensity. Each of these uncer-
tainty contributions manifests itself in the baseline‐
corrected isotopic ratiomeasurements. For sufficiently
large, stable signals, successive static Faraday iso-
tope ratio measurements should approximate multi-
variate normal distributions, and their mean and
uncertainty can be directly input into uncertainty
propagation algorithms.

[64] The ion counter, by converting a single ion
beam at a time into an electron multiplier or photo-
multiplier signal, is not subject to the Johnson‐
Nyquist noise of large resistors. However, because it
is used to measure smaller (<∼0.2 pA) ion beams,
the signal to noise ratio is generally lower due to shot
noise. Several effects specific to ion counters also
contribute to the isotope ratio uncertainty, including
dark noise (essentially Johnson‐Nyquist noise in the
electron/photomultiplier circuit) and dead time, or
the inability to resolve closely spaced ion arrivals.
While the dark noise can be averaged out with a
sufficiently long baseline determination, the dead
time must be measured and monitored closely to
ensure the accuracy of ratios significantly greater or
less than one (e.g., 206Pb/204Pb for a radiogenic
sample). Single collector measurements are subject
to further uncertainty from interpolation between
successive ion beam measurements as the ion beam
grows and decays with time [e.g., Ludwig, 2009].

[65] In order to measure small (<0.2 pA or ∼106 cps)
204Pb signals on an ion counter concurrent with
static measurements of 205Pb to 208Pb on Faraday
detectors, a ‘FaraDaly’ routine is employed. The
routine consists of two cycles, the first with 204Pb in
the ion counter and 205Pb through 208Pb beams in the
high‐mass Faraday detectors, alternating with a
second cycle with 205Pb in the ion counter and 206Pb
to 208Pb beams in the Faraday detectors. The relative
Faraday/ion counter gain for each cycle can be
derived from the 206Pb/205Pb ratio measured on the
Faradays in the first cycle vs. the 206Pb/205Pb ratio
measured in the second cycle, with the 205Pb beam
on the ion counter; ratios involving 204Pb from the
first cycle can then be corrected for this relative gain.
Because the number of measured isotope ratios to
204Pb is half that of the other isotopes, conventional
covariance estimation techniques (see section 3.3)
are invalid, and an expectation‐maximization algo-
rithm must be employed [Dempster et al., 1977].

3.2. Uncertainty Propagation Equation

[66] The linear uncertainty propagation equation can
be derived from the Taylor series expansion of a
function f(x) around the point x = x,

f xþDxð Þ ¼ f xð Þ þDx f ′ xð Þ þDx2
f ′′ xð Þ
2!

þ � � � ð52Þ

the deviation of the function from its value at x = x
is expressed as the sum of the terms after f(x),
beginning with the first‐order term Dx f ′(x). For a
deviation of Dx = sx near x = x, a first‐order
approximation of the deviation from y = f(x) is

�y � �x
dy

dx
; ð53Þ

where dy
dx is evaluated at x = x. Squaring both sides

yields the conventional linear uncertainty propaga-
tion equation for a function of a single variable,
illustrated geometrically in Figure 3:

�2y � �2
x

dy

dx

� 	2

: ð54Þ

[67] The expected value of Dx2, or (xi − x)2 for
a series of measurements xi about the mean x is
the variance of x, denoted sx

2. Likewise, sy
2 is the

resulting square of the average deviation in y = f(x)
due to the scatter in the measurements xi. The
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derivative is evaluated at x = x. In dropping the
higher‐order terms from the Taylor series, beginning
with the Dx2 term, this approach assumes that the
uncertainty in x is relatively small compared to the
curvature of f(x), or that the function is locally linear
at the scale of sx (see Figure 3).

[68] Linear uncertainty propagation for multiple
inputs requires the multivariate form of the Taylor
series, here expressed for two variables z = f(x, y),

f xþDx; yþDyð Þ ¼ f x; yð Þ þ Dx fx x; yð Þ þDy fy x; yð Þ� �
þ 1

2!
Dx2fx x x; yð Þ þ 2DxDy fx y x; yð Þ þDy2fy y x; yð Þ� � � � �

ð55Þ

where fx and fxx are the first and second derivatives of
f(x, y) with respect to x, respectively. The higher‐
order terms may again be dropped, assuming that
uncertainties are small and the differentiated func-
tions are locally linear at the scale the uncertainties
of their inputs. The linear term in equation (55) again
represents the deviation from the measured value
z = f(x, y) encountered at a distance (Dx, Dy) from
(x, y). Squaring the second term on the right‐hand
side of equation (55) yields

Dz2 � Dx2fx x; yð Þ2 þ 2Dx Dy fx x; yð Þfy x; yð Þ þDy2fy x; yð Þ2:
ð56Þ

[69] Thus the expression for the variance of a func-
tion of two variables introduces a new term, the
expected value of DxDy, or (xi − x)(yi − y), which
is known as the covariance between x and y
and denoted sxy

2 . Writing out the derivatives in
equation (56), which are evaluated at (x, y) = (x, y),

and making the above substitutions yields the con-
ventional linear uncertainty propagation equation:

�2
z ¼ �2

x

dz

dx

� 	2

þ 2�2
xy

dz

dx

� 	
dz

dy

� 	
þ �2

y

dz

dy

� 	2

: ð57Þ

3.3. Covariance and Correlation

[70] When two uncertainties are correlated, both are
dependent on a common parameter or effect. One
example of correlated uncertainties is between two
measured isotope ratios with the same isotope in
the denominator, such as the measured 206Pb/204Pb
and 207Pb/204Pb of a radiogenic sample or between
the 206Pb/205Pb and 207Pb/205Pb of an under‐spiked
sample. In the first case, the uncertainty in the
measurement of the less abundant 204Pb denomi-
nator isotope is large, and the uncertainties of the
two ratios will be highly correlated because most of
the uncertainty in each isotope ratio derives from
a common source, the 204Pb measurement. If the
uncertainty in the denominator isotope is relatively
small compared to those in the numerators, such as
the second case above, then their uncertainties are
less correlated, since most of the uncertainty in each
ratio is contributed by the independent measure-
ments of the numerator isotopes, the less abundant
206Pb and 207Pb.

[71] In both cases above, the correlation between a
pair of measured isotope ratios can be determined
empirically from the discrete measured data. The
covariance is defined as the expected value of
DxDy, or (xi − x)(yi − y) above. An unbiased esti-
mate of the covariance, sxy

2 can be calculated from
a discrete sample of n independent measurements
of x and y as

�2
xy ¼

1

n� 1

Xn
i¼1

xi � xð Þ yi � yð Þ ð58Þ

The correlation coefficient rxy is commonly cited
because it does not depend on the magnitude of the
uncertainty of x or y. It has a range of [−1, 1]
inclusive and can be calculated from the covariance
term above, rxy = sxy

2 /(sx sy).

[72] If discreet input data are not available, the
covariance between two measured isotope ratios can
be estimated using the uncertainty of a third iso-
tope ratio that is the quotient of the first two [Schmitz
and Schoene, 2007]. For instance, the covariance
between the measured 206Pb/204Pb and 207Pb/204Pb
ratios could be estimated using their uncertainties
and the uncertainty in the 206Pb/207Pb ratios from the

Figure 3. Illustration of linear uncertainty propagation
for a single input parameter. Uncertainty in the x direction
(sx) of the point (x, y) results in an uncertainty sy in the
function y = f (x) that is proportional to the partial deriva-
tive of y with respect to x. This estimate is accurate if the
function f (x) can be approximated by its derivative at the
scale of sx.
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same data set. This approach assumes that the mean
and standard error of all three ratios are calculated
from the same n measurements, i.e., that no data
have been discarded one ratio and not another.

[73] Other examples of variables with correlated
uncertainties include isotope ratios or dates that have
been subjected to a common correction, such as
fractionation correction or blank and tracer sub-
traction. For instance, if x and y above are functions
of a set of common variables a, b, …, then

�2
xy ¼ �2

a

dx

da

� 	
dy

da

� 	
þ �2

b

dx

db

� 	
dy

db

� 	

þ �2
ab

dx

da

� 	
dy

db

� 	
þ dx

db

� 	
dy

da

� 	� �
þ . . . ð59Þ

Here, a, b,… could for instance be the tracer IC and
enriched isotope concentrations, whose uncertain-
ties and covariance structure, sa

2, sb
2, sab

2 , … are
input by the user, and the calculated variables x and y
could be the radiogenic 206Pb/238U and 207Pb/235U
ratios. Because the variables x and y are inter-
changeable in equation (59), the covariance of xwith
y is the same as the covariance of ywith x: sxy

2 = syx
2 .

[74] Equations (57) and (59) can be expanded for
any number of variables and corresponding uncer-
tainties. However, for each new variable added to
equation (57), a new variance termmust be added, as
well as covariance terms for each new pair of vari-
ables created. The number of covariance terms
grows as n2, so that if 35 inputs and uncertainties
required to reduce U‐Pb data, up to 630 terms are
required to completely describe their uncertainty.
Furthermore, determining the total derivatives of the
each output with respect to the each input through
the complex series of equations presented in section 2
is a daunting task by hand, but it is required for
detailed linear analysis. The covariance terms and
derivatives are most easily combined for uncertainty
propagation by organizing them into covariance
and Jacobian matrices, respectively, and employing
linear algebraic techniques.

4. Propagating Uncertainty With
Matrices

[75] A linear algebraic framework is advantageous
for uncertainty propagation because it efficiently
organizes the covariance and derivative terms pre-
sented above into matrices. Matrix multiplication is
computationally fast, which enables rapid updates as
the analyst explores parameter space in the graphical
user interface of U‐Pb_Redux. Derivatives of the

intermediate reduction parameters and outputs cal-
culated in equations (2) to (51) can be organized into
Jacobian matrices (section 4.1) according to simple
rules, a process that can be automated with software
[Bowring et al., 2011], ensuring accuracy in what
would be many complex equations expressed
longhand. The variance and covariance structure of
the input variables are arranged in a single covari-
ance matrix (section 4.1), and all other correlation
determinations are the product of straightforward
matrix multiplication, so there is no propagation of
uncertainty through multiple intermediate formula-
tions. In this way, matrix representation ensures that
covariance terms are carried through the entire
uncertainty propagation calculation, and terms that
may become important in the future are never
ignored for simplicity. Finally, covariance and
Jacobian matrices can be formulated with a block
structure if analytical, tracer, and/or decay constant
uncertainties are considered independent, so that
matrix multiplication is broken down into small,
quickly calculated pieces.

4.1. Covariance and Jacobian Matrices

[76] Uncertainty propagation using matrix multipli-
cation utilizes two types of matrices, covariance
matrices and Jacobianmatrices. A covariance matrix
describes the uncertainties of a set of variables and
how they relate to one another. For n variables,
it takes the form

S ¼

�2
1 �2

12 . . . �2
1n

�2
12 �2

2 . . . �2
2n

..

. ..
. . .

. ..
.

�2
1n �2

2n . . . �2
n

2
6666666664

3
7777777775

Matrix elements in the first row and first column of
the covariance matrix relate to the first variable,
elements in the second row or second column to the
second variable, and so on. Terms on the diagonal of
the covariance matrix (e.g., s1

2 and s2
2) are variances;

the off‐diagonal elements are covariance terms. For
instance, the matrix element in the first row and
second column is the covariance between the first
and second variable, s12

2 . The covariance matrix is
symmetric because s12

2 = s21
2 . Independent, uncor-

related variables have zero covariance.

[77] The other component of linear algebraic uncer-
tainty propagation, a Jacobian matrix, describes a
linear transformation from the input parameters to
the output variables. In the context of uncertainty
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propagation, the Jacobian matrix approximates the
sensitivity of output variables to small changes in
their input parameters as the partial derivative of
the function of the output with respect to each
input. For a set of m functions f1 to fm of n variables
x1 to xn, a Jacobian matrix takes the form

J1 ¼

@f1
@x1

@f2
@x1

. . . @fm
@x1

@f1
@x2

@f2
@x2

. . . @fm
@x2

..

. ..
. . .

. ..
.

@f1
@xn

@f2
@xn

. . . @fm
@xn

2
6666666664

3
7777777775

Each row of the Jacobian corresponds to an input
variable, x1, x2, … and each column an output,
f1(x1, x2, …), f2(x1, x2, …). Every entry in the
matrix is the partial derivative of the column vari-
able with respect to the row variable. If the function
fi is not defined in terms of the input xj, then the
value of the partial derivative ∂fi /∂xj is zero. These
derivatives may be calculated after analytical dif-
ferentiation [e.g., Schmitz and Schoene, 2007;
Bowring et al., 2011] or approximated numerically
[e.g., Roddick, 1987; Scaillet, 2000].

[78] The data reduction equations (1) to (51) in
section 2 do not express the output variables (e.g.,
the 206Pb/238U date) as a lengthy single function
of the input parameters (e.g., the measured
206Pb/205Pb). The output isotopic dates and ratios
are instead most straightforwardly written in terms
of a series of intermediate parameters (e.g., moles
(206Pb)bl), which accomplish the calculation in
several steps. However, the uncertainty propagation
algorithm presented in equation (57) requires the
partial derivatives of the output z with respect to the
inputs x and y.

4.2. Calculating the Total Derivative

[79] Because the output isotopic dates and ratios
are not defined directly as a function of the input
parameters, their partial derivatives are not defined
as well. When several intermediate steps precede
a final output, its total derivative is required for
uncertainty propagation, which incorporates each
way the output is contingent upon the input. For
instance, the 207Pb/206Pb date depends on the
measured 204Pb/205Pb in two ways. The measured
204Pb/205Pb is first fractionation corrected in
equation (3), then used to calculate both the moles
of 206Pb and of 207Pb in the laboratory blank in
equations (15) and (16). The moles of blank of both

isotopes are subsequently subtracted from the
measured moles 206Pb and 207Pb in equations (18)
and (19) to determine the radiogenic 207Pb/206Pb
ratio (equation (46)) and the 207Pb/206Pb date
(equation (51)). Thus the uncertainty in the
207Pb/206Pb date receives two contributions from
the 204Pb/205Pb uncertainty: from the moles 206Pb
and 207Pb. Both contributions are included in the
total derivative.

[80] In a linear algebraic framework, total deriva-
tives are calculated by multiplying two or more
Jacobian matrices. The rightmost matrix in the
matrix product contains partial derivatives of the
first set of intermediate parameters with respect
to the inputs that define them. For instance, the first
Jacobian matrix could contain the moles of 205Pb in
the tracer (equation (1)) and the fractionation‐
corrected 204Pb/205Pb ratio (equation (3)), which are
both defined in terms of input parameters. If this
matrix is left‐multiplied by another Jacobian matrix
containing the partial derivatives of the moles of
206Pb and 207Pb in the blank (equations (15) and (16))
with respect to the moles of 205Pb in the tracer and
the fractionation‐corrected 204Pb/205Pb ratio, the
product will include the total derivative of the moles
of 206Pb and 207Pb in the blank with respect to the
input parameters.

[81] If f1 and f2 are functions of the input parameters
x1 and x2, and g1 and g2 are in turn functions of f1
and f2, then the total derivative of the functions g1
and g2 with respect to x1 and x2 is the product of
two Jacobian matrices, J1 and J2

dg1
dx1

dg2
dx1

dg1
dx2

dg2
dx2

2
664

3
775 ¼

@f1
@x1

@f2
@x1

@f1
@x2

@f2
@x2

2
664

3
775

@g1
@f1

@g2
@f1

@g1
@f2

@g2
@f2

2
664

3
775

or J ¼ J1 J 2

ð60Þ

The first column of the matrix product J is the total
derivative of the output function g1 with respect to
each of the input variables x1 and x2; the second
column contains the derivatives of g2. Expanding
the matrix multiplication for the element in the first
row and column of J reveals

dg1
dx1

¼ @g1
@f1

@f1
@x1

þ @g1
@f2

@f2
@x1

ð61Þ

which is the equation for the total derivative of g1
with respect to x1.

[82] To propagate uncertainties for a more complex
system, matrix J1 of equation (60) can be modified
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so that it contains rows for n input parameters (x1, x2,
… xn) and columns for m intermediate parameters
( f1, f2,… fm), where those parameters are expressed
as functions of the input parameters. Matrix J2 must
be adjusted as well to contain m rows for the inter-
mediate parameters in J1, with p columns for the
next set of intermediate parameters g1, g2, … gp.
Further Jacobian matrices J3, J4, … can be added
until the final set of output parameters has been
reached.

[83] This technique is utilized in U‐Pb_Redux. The
partial derivatives of the data reduction equations in
section 2 and Appendix A are calculated during data
reduction. These are arranged into approximately
ten Jacobian matrices, depending on the tracer and
common Pb correction scheme employed, that start
with the input variables, step through the inter-
mediate variables, and end with the output isotope
ratios and dates. The product is the Jacobian matrix
J, a linearized model of the data reduction equations
that contains the total derivatives of the isotopic
dates and ratios in sections 2.2.5 and 2.2.6 and
Appendix A with respect to the user‐input param-
eters in Tables 1 and 2.

4.3. Uncertainty Propagation Equation

[84] Using the covariance and Jacobian matrices
assembled above, the uncertainty propagation equa-
tion for z = f(x, y) (equation (57)), can be restated as
a matrix product,

�2
z ¼

dz

dx

dz

dy

� �
�2
x �2

xy

�2
xy �2

y

" # dz

dx
dz

dy

2
664

3
775 ¼ JT S J ð62Þ

To calculate the uncertainty and covariance between
multiple outputs, the outermost Jacobian matrix con-
tains a column for each output. The matrix pro-
duct then yields the covariance matrix of the output
parameters. For example, if w is also a function of x
and y, then by calculating the product

�2z �2
zw

�2
zw �2

w

" #
¼

dz

dx

dw

dx
dz

dy

dw

dy

2
664

3
775
T

�2x �2xy
�2
xy �2

y

" # dz

dx

dw

dx
dz

dy

dw

dy

2
664

3
775 ð63Þ

the uncertainty in w, sw
2 and the covariance between

z and w, szw
2 fall out.

[85] The covariance matrix S can be expanded
for any number of inputs, and the Jacobian matrix J
can represent the product of several intermediate
Jacobian matrices J1, J2,…. In this way, uncertainty

propagation for a complex system of inputs, inter-
mediate parameters, and related outputs is repre-
sented by a single matrix equation. Because J
contains the total derivatives of the outputs with
respect to the inputs, covariance terms do not need to
be calculated in uncertainty propagation expressions
for every intermediate parameter. The intermediate
parameters can now be defined as parameters of
interest instead of being formulated to facilitate
covariance calculations. An illustration of the U‐Pb
uncertainty propagation algorithm with populated
covariance and Jacobian matrices can be found in
the auxiliary material.1

5. Weighted Means

[86] The goal of calculating a weighted mean is to
report a single date and uncertainty that best repre-
sents the knowledge accumulated by a set of mea-
surements that are assumed to represent a single
population with normally distributed uncertainties.
Every weighted mean algorithm involves assigning
weights, or multipliers which sum to unity, to the
measurements, then summing the weighted data.
The arithmetic mean gives each of n measurements
an equal weight of 1/n, but a weighted mean may
assign a unique weight to each datum so that precise
data are weighted more heavily.

5.1. Conventional Weighted Mean
of Independent Data

[87] For the weighted mean t of n independent
measurements t1, … tn, the weights a1, … an are
inversely proportional to the variance of each date,
s1
2, … sn

2, so that

�i ¼ 1

�2
i


Xn
i¼1

1

�2
i

� 	

where the denominator is used to normalize the sum
of the weights. Thus the weighted mean t is

t ¼
Xn
i¼1

�i ti ¼
Xn
i¼1

ti
�2
i

� 	
Xn
i¼1

1

�2
i

� 	
ð64Þ

This choice of weights minimizes the sum of the
squared difference between each date and the mean,
divided by the date’s variance,

S ¼
Xn
i¼1

ti � tð Þ2
�2
i

ð65Þ

1Auxiliary materials are available in the HTML. doi:10.1029/
2010GC003478.
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The statistic S has a c2 distribution with n − 1
degrees of freedom. The quotient S/(n − 1) is the
‘mean square of weighted deviates’ (MSWD) [e.g.,
Wendt and Carl, 1991], which characterizes the
goodness of fit, or how well the weighted mean t
describes the data ti. MSWD values close to one
indicate that the scatter in the data ti can be explained
by their uncertainties si. Values much lower or
greater than one may indicate that the uncertainties
have been overestimated or underestimated,
respectively. Minimizing S, which also minimizes
the MSWD and the uncertainty of t, concurrently
maximizes the likelihood that, given the measure-
ments t1, … tn, the mean is t.

[88] The uncertainty of t can be derived using
the conventional uncertainty propagation equation.
The derivative of t with respect to a date, ti in
equation (64) is

@t

@ti
¼ 1

�2
i


Xn
i¼1

1

�2
i

� 	
¼ �i

Assuming that the dates t1, … tn have uncorrelated
uncertainties, the variance of t, according to the
uncertainty propagation equation (57) is

�2
t ¼

Xn
i¼1

@t

@ti

� 	2

� �2
i

" #
¼
Xn
i¼1

1

�2
i

� 	2
 Xn
i¼1

1

�2
i

� 	 !2

� �2
i

2
4

3
5

Combining numerator terms and factoring out a
common denominator yields,

�2
t ¼

Xn
i¼1

�2
i

1

�2
i

� 	2
" #
 Xn

i¼1

1

�2
i

� 	 !2

Finally, dividing out a si
2 term in the numerator

gives the form x/x2, which simplifies to

�2
t ¼ 1


Xn
i¼1

1

�2
i

� 	
: ð66Þ

[89] Equations (64) and (66) assume, however, that
each of the measured dates ti are independent: that
none of their uncertainties share a common sys-
tematic contribution. Although these equations can
be used to propagate random analytical uncertain-
ties, they cannot assess the systematic contribu-
tion of tracer or decay constant uncertainties to a
weighted mean date. In the past, systematic errors
have been added in quadrature after equations (64)
and (66) are evaluated with analytical uncertainties.

However, this approach cannot accurately handle
several important scenarios.

[90] First, if a systematic variable affects each
analysis differently, it is unclear which magnitude
to add in quadrature. One example is combining
analyses with different ratios of tracer to sample.
Because the magnitude of the tracer subtraction is
different for each, the uncertainty contribution from
the subtraction is also different. Also, because the
estimated IC of the tracer differs from the true value
(within uncertainty), tracer subtraction will intro-
duce some scatter in the results. If the estimated
tracer 206Pb/205Pb ratio is greater than, but within
uncertainty of, the true 206Pb/205Pb ratio, then the
moles of radiogenic 206Pb in under‐spiked analyses
will be overcorrected for the 206Pb in the tracer
in equation (18), and overspiked analyses will be
overcorrected even further. This scatter, which is
introduced by a systematic source, must be con-
sidered along with the scatter from random effects
during calculation of weighted mean statistics, so
that it is not interpreted as ‘geologic scatter.’

[91] Second, it is unclear how to propagate uncer-
tainty which has both a random component and a
systematic component with equations (64) and (66).
For instance, correction for Pb fractionation using
a single‐isotope Pb tracer is usually performed by
repeatedly analyzing a certified reference material,
e.g., NBS981. The random uncertainty propagated
in the fractionation correction is often taken as the
long‐term reproducibility of this standard, but the
uncertainty also contains a systematic component
related to the uncertainty in the certified IC of
NBS981. The latter cannot be reduced by repeated
analyses, which would occur if this uncertainty
were considered as analytical and included in si
in equation (66).

[92] The solution to both of the scenarios above is
to treat systematic uncertainties as uncertainty corre-
lations between analyses, yielding a weighted mean,
its uncertainty, and an MSWD that is not artificially
deflated by misattributed uncertainties.

5.2. The Date Covariance Matrix

[93] As section 3.3 details, correlations arise between
calculated values when they rely on common para-
meters. In the case of weighted mean U‐Pb dates,
two large uncertainty contributions from common
parameters are the IC and U/Pb ratio of the tracer,
and the decay constant uncertainties. The covariance
matrix for a measured data set of isotopic dates
can be constructed with each date’s variance (1s
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uncertainty, squared) on its diagonal. The variance
includes uncertainty contributions from both ran-
dom and systematic effects. Off‐diagonal elements
characterize the correlation between pairs of dates.
Along with the numerical dates themselves, the date
covariance matrix, S, can then be used to calculate
a generalized weighted mean [Lyons et al., 1988;
Valassi, 2003] that accounts for both random and
systematic uncertainties.

[94] The date covariance matrix can be calculated
using the linear algebraic methods presented in
section 4.3. The total derivative of each date with
respect to each common variable is calculated when
multiplying Jacobian matrices during the uncertainty
propagation for each fraction (section 4). For instance
in equation (60), the total derivatives for the output
variable g1 with respect to the inputs x1, x2 are found
in the first column and first two rows of matrix J.

[95] Analogously, each column of the product of the
Jacobian matrices of the U‐Pb uncertainty propa-
gation equations contains the derivatives of the
one of the outputs, for instance the 206Pb/238U date.
Several rows in this column contain the derivatives
with respect to variables shared with the other dates,
such as the tracer parameters and the decay constants.
The m rows corresponding to the systematically
varying uncertainties in the column corresponding
to the 206Pb/238U date can be extracted from the
Jacobian matrix for each of the n fractions to be
averaged. The resulting columns are appended to
create a new m by n Jacobian matrix, Jt. Each col-
umn of the newmatrix corresponds to the 206Pb/238U
date of the n fractions, and each row corresponds to
one of the m systematically varying parameters.

[96] Using Jt and the input covariance matrix for
the set of common variables, the systematic covari-
ance matrixSts for the dates can be calculated using
equation (62),

Sts ¼ JT
t Ss J t ð67Þ

where Ss is the m by m covariance matrix of the
systematic uncertainties to be propagated and Sts is
the n by n covariance matrix describing the sys-
tematic uncertainty contributions to the n dates.
Another n by n covariance matrix Str describes the
random (analytical) uncertainties for each date, with
the analytical variance for each date on its diagonal.
The covariance matrix S for the dates is then the
sum of the random and systematic components of
uncertainty,

S ¼ Sts þStr ð68Þ

5.3. Generalized Weighted Mean
of Correlated Data

[97] The derivation for a generalized weighted
mean of correlated measurements is analogous to
the derivation for the conventional weighted mean
above. Following Lyons et al. [1988], the best
linear unbiased estimate (BLUE) of the generalized
weighted mean, t̂, given the correlated measure-
ments t1, … tn is a weighted linear sum of the data
that simultaneously minimizes the uncertainty of the
estimate t̂ and the MSWD, maximizing the proba-
bility that t̂ is the mean of the data. The generalized
weighted mean can be represented by a sum of scalar
products as in equation (64), or equivalently as the
dot product of two vectors, hereafter displayed in
bold, containing the weights and the observed data

t̂ ¼
Xn
i¼1

�i ti ¼ aTt ð69Þ

[98] Unlike the conventional weighted mean, there
is no simple formula for the generalized weighted
mean weights. Instead, the vector of weights, a,
is determined using the fact that it minimizes the
uncertainty in t̂. Analogous to the ‘conventional’
weighted mean derivation, the derivative of t̂ with
respect to the vector of measured dates t is

@ t̂=@t ¼ a

The resulting vector of derivatives is the Jacobian
matrix of the function t̂. Along with the covari-
ance matrix for the measured dates derived in
section 5.2, the Jacobian matrix can be substituted
into equation (62), the linear algebraic uncertainty
propagation equation, to yield,

�2
t̂ ¼ aTS a ð70Þ

where S is the covariance matrix of the dates.
Minimizing �2

t̂ subject to the constraint that the sum
of the weights in a is unity is most easily accom-
plished with a Lagrange multiplier.

[99] A common strategy for solving constrained
minimization problems, a Lagrange multiplier is
introduced to find the extrema of the function f(a)
subject to the constraint g(a) = c. Here, f(a) is
equation (70) and the constraint that the sum of
the weights equal unity can be restated as a vector
product,aT1 = 1, where 1 is a n‐component column
vector of ones. At an extremum of f(a), the gradients
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of f(a) and g(a) are parallel, although not neces-
sarily the same magnitude. Thus,

rf að Þ ¼ ��rg að Þ

and l is known as the Lagrange multiplier. Utilizing
the linearity of the gradient operator, such thatrF +
rg =r( f + g), both terms can be moved to the left‐
hand side of the equation and combined. Enforcing
the constraint that g(a) = c gives

r f að Þ þ � � g að Þ � cð Þ½ � ¼ 0

where 0 is a matrix of zeros. Substituting the gen-
eralized weighted mean equation and constraints
yields the gradient of a function F,

rF ¼ r aTS aþ � � aT1� 1
� �� � ¼ 0

[100] The gradient may be decomposed into the
partial derivatives with respect to the two variables,
a and l, which both evaluate to zero. Because the
covariance matrix S is symmetric, ST = S, pro-
ducing two equations,

@F

@a
¼ ST þS
� �

aþ �1 ¼ 2Saþ �1 ¼ 0 ð71Þ

@F

@�
¼ aT1� 1 ¼ 0 ð72Þ

with two unknowns, l and a.

[101] A solution to this system of equations is found
by first solving equation (71) fora, then substituting
this expression into equation (72) and evaluating the
transpose,

a ¼ � 1

2
�S�11

� 1

2
�S�11

� 	T

1 ¼ � 1

2
�1TS�11 ¼ 1

Where S−1 is the inverse of the date covariance
matrix. Because 1TS−11 is a scalar quantity, it can
be moved to the denominator. The resulting equa-
tion can be solved for l and substituted back into
equation (71), yielding

� ¼ �2



1TS�11
� �

2Saþ �2



1TS�11
� �� �

1 ¼ 0

Finally, solving for a gives

a ¼ S�11



1TS�11
� � ð73Þ

[102] To evaluate the generalized weighted mean,
the expression for a in equation (73) can be sub-
stituted into equation (69), producing the equation
for the generalized weighed mean,

t̂ ¼ 1TS�1t



1TS�11
� � ð74Þ

The expression for a in equation (73) can also be
substituted into equation (70), yielding

�2
t̂ ¼ S�11

� �TS S�11
� �


1TS�11
� �2

Evaluating the transpose and canceling terms in the
numerator yields the form x/x2, which simplifies to

�2t̂ ¼ 1



1TS�11
� � ð75Þ

The variance of the generalized weighed mean is
thus equal to the reciprocal of the sum of the terms in
the inverse covariance matrix S−1. For the special
case when the uncertainties in all dates are inde-
pendent, S and thusS−1 become diagonal matrices
and equation (75) evaluates to equation (66).

[103] Analogous to equation (65), the goodness of
fit, or degree to which the weighted mean t fits the
observed data ti, is described by the statistic

S ¼ rT S�1 r ð76Þ

where r is the vector of residuals ri = ti − t̂. S has a
c2 distribution with n − 1 degrees of freedom, and
dividing S by n − 1 yields the familiar MSWD.

5.4. Application to U‐Pb Geochronology

[104] For U‐Pb geochronology by ID‐TIMS, the
largest systematic uncertainty contributions come
from the tracer IC and enriched isotope concentra-
tions and from the uncertainty in the decay con-
stants. While analytical uncertainties alone are used
to compare U‐Pb analyses measured with the same
tracer, it is necessary to propagate the tracer uncer-
tainties in order to compare with U‐Pb analyses
measured with a different tracer. Comparison of U‐Pb
dates with other decay systems, such as 40Ar‐39Ar,
requires propagating the U decay constant uncer-
tainties as well. These three uncertainties are often
represented in the form ±X/Y/Z, where X is the
analytical uncertainty, Y includes the analytical and
tracer contributions, and Z includes the analytical,
tracer and decay constant uncertainties [e.g., Schoene
and Bowring, 2006].
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[105] The generalized weighted mean algorithm is
used by U‐Pb_Redux to calculate X, Y, and Z. The
covariance matrix Str of random uncertainties is
first assembled by placing the analytical uncertain-
ties for each of n dates along the diagonal of an n
by n matrix Str. Evaluating equations (73) to (76)
with S = Str is mathematically equivalent to using
equations (64) to (66) for independent measure-
ments, and gives the uncertainty X.

[106] Following section 5.2, covariance matrices for
the dates which contain the tracer and decay constant
uncertainties are assembled using equation (67). To
calculate Y, only the tracer parameter uncertainties
are included inSts, and to calculate Z, both the tracer
and decay constant uncertainties are present. The
matrix Sts for the tracer and decay constants also
contains elements for any covariance between the
two, whichwould be incurred if for instance the 235U
decay constant were recalibated to the 238U decay
constant using closed system zircon analyses spiked
with the same tracer [Schoene et al., 2006;Mattinson,
2010].

[107] The MSWD calculated using equation (76) for
the generalized weighted mean is different for X, Y,
and Z. We recommend using the MSWD calculated
for Z because it accurately incorporates all sources
of scatter.

6. Verification by Monte Carlo Method

[108] The linear uncertainty propagation equations
presented above are based upon several impor-
tant assumptions. First, in order to interpret output
covariance matrices in terms of confidence intervals,
for example that ±2s approximates a 95% con-
fidence interval (CI) about an isotopic date, the
uncertainties of the inputs are all assumed to have
normal (Gaussian) probability distributions. This
assumption is typically justified using the central
limit theorem, which states that the mean of many
small random effects is approximately normally dis-
tributed, even if the probability distribution of the
effects are not.

[109] Most, if not all, uncertainties for ID‐TIMS
measurements are observed to be normally distrib-
uted. The isotope measurements in the numerator
and denominator of isotope ratios are assumed to be
controlled by Poisson processes, which yield asym-
metric Poisson probability distributions for low count
rates. However, at the count rates (generally >10 cps)
and integration times (generally >100 s total) usually
used for U‐Pb geochronology by ID‐TIMS, these
distributions can be closely approximated asGaussian.

In addition, the uncertainties in isotope ratios also
contain contributions from other sources, such as
resistor noise and beam interpolation. Although a
Student’s t‐distribution is appropriate for discrete
data with finite degrees of freedom, U‐Pb analyses
typically contain >50 ratio measurements, at which
point the Student’s t and the normal distributions are
almost identical.

[110] Other input uncertainties, such as isotopic
fractionation or the blank isotopic composition, can
often be measured with higher precision than their
external variability. For instance, the variability in
the Pb blank IC is most likely due to variable mag-
nitude contributions from various Pb contamination
sources, such as ion exchange chemistry and sample
loading. The average effect of these small variations,
as predicted by the central limit theorem, is an
observed normal distribution. This reasoning is also
extended to unobservable quantities, such as the
Th/U ratio of the magma used for 230Th‐correction
of 206Pb/238U dates [e.g., Crowley et al., 2007].

[111] Another assumption made by linear uncer-
tainty propagation, illustrated in Figure 3, is that the
magnitude of the input uncertainties are small,
so that the function y = f(x) is locally linear at the
scale of sx. This is equivalent to the assumption
that the higher‐order terms in the Taylor series in
equation (55) are insignificant. Because the data
reduction equations are not linear (they involve divi-
sion, exponentiation, and logarithms) this assump-
tion depends upon the magnitude of the observed
input uncertainties. To test whether linear uncertainty
propagation algorithm implemented in U‐Pb_Redux
accurately models the uncertainty of isotopic dates
with typical ID‐TIMS input uncertainties, the
Monte Carlo method (MCM) is used.

6.1. Monte Carlo Experimental Setup

[112] Implementation of MCM begins by specifying
a probability distribution for each input variable
[BIPM et al., 2008b; Cox and Siebert, 2006]. For
this implementation, all input variables are assumed
to have multivariate normal probability distribu-
tions, but MCM can also be implemented with other
(e.g., uniform) input distributions. Next, a pseudo-
random number generator is used to produce a ran-
dom sample, known as a Monte Carlo trial, from the
input probability distribution for each parameter.
These values are used to calculate the output vari-
ables, e.g., isotopic dates, and then the process is
repeated M times. The resulting distribution of the
M values for an output approximates its probability
distribution, and if several outputs are calculated
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from the same input trials, the result approximates
their joint probability distribution, which describes
their correlation as well.

[113] There are multiple ways to interpret the output
of a Monte Carlo model. If the M calculated output
variables are normally distributed, then two standard
deviations about the mean is a good estimate of the
95% CI. When the results are not normally distrib-
uted, then multiple 95% CIs can be reported. The
two most popular are the 95% CI that is symmetric
about the mean of the distribution and the shortest
95% CI [BIPM et al., 2008b]. For probability dis-
tributions close to normal, the form of the first is
most familiar and is used here.

6.2. Results

[114] The MCM has been utilized before for U‐Pb
data [Briqueu and de la Boisse, 1990], but never in
the context of calculating radiogenic U‐Pb dates
from measured data or testing a U‐Pb uncertainty
propagation algorithm. Here we present data for
three ID‐TIMS zircon analyses with typical analyt-
ical uncertainties. The mathematical programming
environment MATLAB was used to generate

M = 106 multivariate normal Monte Carlo trials
from the measured and estimated input parameters
and uncertainties. The results of Monte Carlo
methodmodeling are plotted as histograms and best‐
fit normal distributions and presented in Figure 4.

[115] The first analysis modeled by MCM is an
Eocene zircon with a Pb*/Pbc, or ratio of total
radiogenic to common Pb, of ∼18. The measured
206Pb/205Pb and 207Pb/205Pb uncertainties are 0.025%
and 0.090%, respectively. U‐Pb_Redux calculates a
206Pb/238U date of 47.860 ± 0.041 Ma (2s). Visual
inspection of the histogram in Figure 4a reveals that
the Monte Carlo trials closely approximate a nor-
mal distribution. The mean and twice the standard
deviation of the 106 trials yields 47.860 ± 0.041 Ma
(2s), agreeing to the numerical precision represented
by two significant figures in the reported uncertainty.
The 207Pb/235U date for this analysis was also
modeled by MCM, although this date is not usually
reported in this age range because it is generally less
precise. The Monte Carlo trials plotted in Figure 4b
are also normally distributed, and the date calculated
by U‐Pb_Redux and the Monte Carlo results both
agree at 48.12 ± 0.33 Ma (2s).

Figure 4. Histograms illustrating the results of 106 Monte Carlo simulations for three representative ID‐TIMS zircon
analyses. Red curves are normal distributions corresponding to the date and uncertainty calculated by U‐Pb_Redux.
(a) Monte Carlo simulations of the 206Pb/238U date of an Eocene zircon, (b) the 207Pb/235U date of the same analysis,
and (c) the 207Pb/206Pb date of an Archean zircon are normally distributed, with the same mean and uncertainty calcu-
lated by U‐Pb_Redux. The distribution of Monte Carlo trials for a young (d) Th‐corrected Bishop Tuff grain is slightly
right skewed but can be closely approximated by its linear uncertainty propagation result.
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[116] The second analysis modeled is an Archean
zircon with a Pb*/Pbc of ∼85 and measured
206Pb/205Pb and 207Pb/205Pb uncertainties of 0.022%
and 0.029%, respectively. A histogram showing
Monte Carlo evaluations of the 207Pb/206Pb date is
presented in Figure 4c, and approximates a normal
distribution closely. The date and uncertainty of
2576.0 ± 1.5 (2s) calculated by U‐Pb_Redux again
agree with the mean and two standard deviations of
the 106 Monte Carlo realizations within numerical
precision.

[117] Finally, a <1 Ma zircon from the Bishop Tuff
with a Pb*/Pbc of 4.6 and a measured 206Pb/205Pb
uncertainty of 0.054%was modeled withMCM. For
an analysis this young, the uncertainties in the 230Th
correction (Appendix A) dominate the uncertainty
budget. Here, the Th/U of the magma was assumed
to have the same variability as Th/U ratios mea-
sured in melt inclusions in quartz phenocrysts,
2.81 ± 0.32 (2s) [Crowley et al., 2007]. Visual
inspection of the histogram in Figure 4d reveals a
distribution slightly skewed to the left. This results
from a nonlinearity in the 230Th correction: Monte
Carlo trials with lower magma Th/U values result
in a range of Th corrections, rather than trials
with higher Th/U magma values where the near‐
maximum correction is made. The linear uncertainty
propagation algorithm employed by U‐Pb_Redux,
calculates a 230Th‐corrected 206Pb/238U date of
768.6 ± 3.3 ka (2s). This is approximated closely by
the mean and symmetric 95% confidence interval
calculated from the Monte Carlo realizations of
768.5 ± 3.3 ka, with a difference between the
expected values of only 78 years.

7. Conclusions

[118] We propose that the ID‐TIMS community
adopt a common U‐Pb data reduction and uncer-
tainty propagation algorithm for reporting, com-
paring, and archiving a rapidly growing amount of
isotopic data. An ideal algorithm must provide a
transparent model to calculate dates from input
measurement, tracer, and laboratory parameters for a
variety of tracers and for phases with and without
initial common Pb, incorporating initial daughter
product disequilibrium corrections. This model
should also propagate the uncertainties in each input
parameter, as well as any possible correlations
between them, to determine the uncertainties and
correlations between the variety of output isotopic
ratios and dates geochronologists plot and interpret.
Finally, a mechanism is required for combining
several analyses into a single maximum likelihood

estimate of the date and uncertainty they repre-
sent, incorporating random and multiple systematic
uncertainties.

[119] A new set of data reduction and uncertainty
estimation algorithms fulfill these criteria and are
embedded in the open source software package
U‐Pb_Redux. Uncertainty propagation using the
linear algebraic expression of covariance and Jaco-
bian matrices is highly extensible, so that relation-
ships between inputs, intermediate parameters, and
outputs are easily codified and calculations are
computationally inexpensive. This approach also
determines the dependence of each measurement on
often complexly related systematic uncertainties. If
these systematic uncertainties are expressed as cor-
relations between the dates being averaged, then the
same linear algebraic uncertainty propagation tech-
niques can be used to calculate the weighted mean
dates and statistics.

[120] Interpreting uncertainties propagated linearly
as confidence intervals assumes the model is linear
at the scale of the input uncertainties. This assump-
tion is tested and verified with Monte Carlo simu-
lations of three typical zircon analyses, which show
that typical ID‐TIMS uncertainties yield normal
distributions that agree with linear uncertainty prop-
agation calculations.

Appendix A: Disequilibrium Corrections
and Initial Common Pb Models

[121] The U‐Pb data reduction equations presented
in section 2 assume that one daughter atom of 206Pb
or 207Pb is created from the decay of each parent
atom of 238U or 235U, respectively. However, the
path from U to Pb in each system proceeds through
a series of alpha and beta decays that produce a chain
of intermediate daughter nuclides before yielding
a Pb atom. The U‐series decay chain is at ‘secular
equilibrium’ when all isotopes have the same
activity (equal to its decay constant multiplied by
its atomic abundance), so that each intermediate
daughter is being created from the nuclide before
it in the chain at the same rate as it is decaying to
the next daughter nuclide. This results in a higher
abundance of daughter nuclides with longer half
lives. Chemical processes that fractionate the parent
and intermediate daughter nuclides disturb the sec-
ular equilibrium abundance ratios, creating inter-
mediate daughter product disequilibrium.

[122] For instance, the elements U and Th are frac-
tionated during crystallization of a dated phase if
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their distribution coefficients in that phase differ
(i.e., DTh ≠ DU). This affects the longest‐lived
intermediate daughter product in the 238U decay
chain, 230Th (t1/2 ≈ 76 kyr). Th is relatively incom-
patible compared to U during crystallization of
zircon, for example, resulting in a 230Th deficiency,
and it is relatively compatible in monazite, resulting
in 230Th excess [Mattinson, 1973; Schärer, 1984]. In
order for the 230Th to return to secular equilibrium, it
must accumulate at the expense of 206Pb production
in zircon or decay back to secular equilibrium levels
in monazite, generating excess 206Pb. The result-
ing age correction for zircon is bounded: if Th is
completely excluded from the crystal, the maximum
correction of 1/l230 ≈ 110 kyr is made to the
206Pb/238U date. However, if the mineral incorpo-
rates excess 230Th, then no upper bound exists on
the theoretical magnitude of the age correction.

A1. Th Correction Derivation

[123] Initial 230Th disequilibrium in the 238U
decay chain necessitates a correction to the molar
quantity of 206Pb in the conventional age equation,
D = P(elt − 1):

moles 206Pb
� �

rad ¼ moles 238U
� �

spl � e�238 t
Th
206=238 � 1

� �
þ moles 230Th

� �
init

�moles 230Th
� �

eqbm

ðA1Þ

where t206/238
Th is the 206Pb/238U date of the sam-

ple corrected for initial 230Th disequilibrium. The
difference between the moles of 230Th at initial
crystallization and the moles of 230Th at secular
equilibrium is negative if Th has been excluded from
the mineral, decreasing the moles of 206Pb sub-
sequently produced, or positive if Th has been
preferentially included into the mineral, generating
excess 206Pb.

[124] Molar quantities in equation (A1) can be
expressed as isotopic abundance ratios by dividing
through by the moles of parent isotope, 238U. Due
to the long half‐life of 238U (∼4.5 Gyr), its atomic
abundance is assumed to be the same at crystalli-
zation and after returning to secular equilibrium,
which occurs after about six half lives of the longest
lived intermediate daughter, or ∼460 kyr, if all 230Th
is excluded.

206Pb
238U

� 	
rad

¼ e�238�tTh206=238 � 1þ
230Th
238U

� 	
init

�
230Th
238U

� 	
eqbm

ðA2Þ

[125] The Th/U ratios on the right‐hand side of
equation (A2) can be expressed as activity ratios by
multiplying the atomic abundance of each isotope
by its decay constant. Equality is maintained by
multiplying the resulting expression by the recip-
rocal of the decay constant ratio.

230Th
238U

� 	
init

�
230Th
238U

� 	
eqbm

¼ �238

�230

�230

�238

230Th
238U

� 	
init

��230

�238

230Th
238U

� 	
eqbm

 !

¼ �238

�230

230Th
238U

� �
init

�
230Th
238U

� �
eqbm

 !
ðA3Þ

where the square brackets enclose activity ratios.

[126] Both activity ratios in expression (A3) may be
transformed into measurable parameters. The degree
of initial isotopic disequilibrium depends on the
ratio between the distribution coefficients DTh

and DU. Each distribution coefficient describes the
ratio of the molar abundance of Th and U in the
sample to the molar abundance in the magma. This
expression can be rearranged so that the abundance
ratio of sample isotopes is in the numerator and
the corresponding magma abundance ratio is in the
denominator.

DTh

DU
¼ Thspl=Thmagma

Uspl=Umagma
¼ Th=Uð Þspl

Th=Uð Þmagma
ðA4Þ

Fractionation of specific isotopes, such as 230Th and
238U, follow the same rule, yielding an equivalent
expression in terms of the initial molar 230Th/238U
ratio of the sample and the magma. The molar ratio
can again be converted to an activity ratio by mul-
tiplying each isotope by its decay constant.

Th=Uð Þspl
Th=Uð Þmagma

¼
230Th=238U
� �

init

230Th=238U
� �

magma

� �230=�238

�230=�238
ðA5Þ

The numerator and denominator become activity
ratios, denoted by square brackets. Assuming that
the magma is at secular equilibrium at crystalliza-
tion, its activity ratio [230Th/238U]magma = 1.

Th=Uð Þspl
Th=Uð Þmagma

¼
230Th=238U
h i

init

230Th=238U
h i

magma

¼
230Th
238U

� �
init

ðA6Þ

Thus, the initial [230Th/238U] activity ratio is
equivalent to the ratio of distribution coefficients
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DTh/DU, and the Th/U of the sample divided by the
Th/U of the magma. Instead of assuming the magma
to be at secular equilibrium, both may be multiplied
by the [230Th/238U] activity ratio of the magma to
yield the initial [230Th/238U] activity ratio at crys-
tallization if constraints exist on its value.

[127] Finally, the [230Th/238U] activity ratio of the
sample after it has attained secular equilibrium is
also equal to one,

230Th
238U

� �
eqbm

¼ 1 ðA7Þ

[128] Substituting the recast activity ratios in (A6)
and (A7) into (A3), then substituting this expres-
sion into (A2) yields the conventional equation for
the 230Th‐corrected 206Pb/238U date [e.g., Schärer,
1984],

206Pb
238U

� 	
rad

¼ e�238 �t
Th
206=238 � 1þ �238

�230

� Th

U

� 	
spl



Th

U

� 	
magma

�1

" #
ðA8Þ

[129] Alternately, if the ratio of distribution coeffi-
cients DTh/DU is better constrained than the Th/U
of the magma, the left side of equation (A4) can be
substituted into equation (A8),

206Pb
238U

� 	
rad

¼ e�238 �t
Th
206=238 � 1þ �238

�230
� DTh

DU
� 1

� 	
ðA9Þ

A2. Th Correction Implementation

[130] In order to calculate the 230Th‐corrected
206Pb/238U date in equation (A8), an estimate of the
Th/U of the magma is required; the Th/U of the
sample may be calculated from available data.
Because the Th/U of the magma is expressed as an
atomic abundance ratio, the total atomic abundances
of Th and U in the sample are required, which are
each the sum of the abundances of the respec-
tive major isotopes. The atomic abundance of U in
the sample, moles(U)spl, is the sum of the moles of
238U and 235U,

moles Uð Þspl ¼ moles 238U
� �

spl
þmoles 235U

� �
spl

ðA10Þ

[131] The element Th has a single major isotope,
232Th; the second largest contribution, from the
230Th in the 238U decay chain, is negligible. Due
to the long half‐life of 232Th (∼14 Gyr), there is no
significant difference between the abundance of Th

at present and during crystallization. The atomic
abundance of 232Th in the sample can be back‐
calculated from themoles of radiogenic 208Pb derived
in equation (23) and the 230Th‐corrected date of the
sample. The moles of 232Th in the sample is given
by a rearrangement of the isotopic decay equation,
D/P = elt − 1,

moles 232Th
� �

spl
¼ moles 208Pbð Þrad

exp �232 � tTh206=238
� �

� 1
ðA11Þ

where t206/238
Th is the 230Th‐corrected 206Pb/238U date.

[132] The expressions in (A10) and (A11) can
be substituted into equation (A8) to yield a new
equation

206Pb
238U

� 	
rad

¼ e�238�tTh206=238 � 1þ �238

�230

�
moles 208Pbð Þrad



e�232 �t

Th
206=238 � 1

� �
moles Uð Þspl



Th

U

� 	
magma

�1

2
664

3
775

ðA12Þ

This equation cannot be solved directly for t206/238
Th ,

so U‐Pb_Redux utilizes Newton’s Method, an iter-
ative numerical solution.

[133] Alternately, equation (A9) can be solved
directly for t206/238

Th if the ratio of distribution coef-
ficients is known,

tTh206=238 ¼
1

�238
log

206Pb
238U

� 	
rad

þ1

�
��238

�230

DTh

DU
� 1

� 	�
ðA13Þ

[134] Using the 230Th‐corrected 206Pb/238U date
calculated in equation (A12) or (A13), it is possible
to calculate the moles of 232Th in the sample
(equation (A11)), as well as the Th‐corrected moles
of 206Pb,

moles 206Pb
� �Th

rad
¼ moles 238U

� �
spl

e�238�tTh206=238 � 1
� �

ðA14Þ

and the Th‐corrected 206Pb/238U ratio used in the
conventional concordia plot,

206Pb
238U

� 	Th

rad

¼ moles 206Pbð ÞThrad
moles 238Uð Þspl

ðA15Þ

[135] A 230Th correction is most often applied to
samples younger than ca. 500 Ma, whose uncer-
tainties are comparable to the magnitude of the
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correction. The 207Pb/206Pb date is not often used for
young (<ca. 2 Ga) samples because it is sensitive
to the low abundance of 207Pb in young samples.
However, Amelin et al. [2010] show that evolving
laboratory and mass spectrometry techniques applied
to early solar system studies offer ever‐finer resolving
power at >4.5 Ga suggesting that Th correction may
become necessary. The 230Th‐corrected radiogenic
207Pb/206Pb ratio is

207Pb
206Pb

� 	Th

rad

¼ moles 207Pbð Þrad
moles 206Pbð ÞThrad

ðA16Þ

As with the un‐corrected 207Pb/206Pb date, a solu-
tion for t207/206

Th cannot be reached analytically for the
equation

207Pb
206Pb

� 	Th

rad

¼
238U
235U

� 	�1

spl

�
exp �235 � tTh207=206
� �

� 1

exp �238 � tTh207=206
� �

� 1
ðA17Þ

Instead, Newton’s Method is employed by
U‐Pb_Redux.

A3. Pa Correction

[136] The longest‐lived intermediate daughter pro-
duct in the 235U decay chain is 231Pa, with a half‐life
of ∼33 kyr. Analogous to 230Th in the 238U decay
chain, the [231Pa/235U] activity ratio may be per-
turbed during crystallization from a magma at
secular equilibrium. Unlike the 230Th correction,
however, there is no way to back‐calculate the initial
Pa/U ratio of the dated phase, as with the 208Pb
daughter of 232Th in equation (A12). Instead, cor-
rection requires the initial [231Pa/235U] activity ratio at
crystallization or DPa/DU, the ratio of the Pa and U
distribution coefficients in the dated phase. Derivation
of the 231Pa correction equations parallels the 230Th
equations presented above.

[137] The 231Pa‐corrected 207Pb/235U date, t207/235
Pa ,

can be calculated in the same manner as
equation (A13).

tPa207=235 ¼
1

�235
log

"
207Pb
235U

� 	
rad

þ1��235

�231

231Pa
235U

� �
spl

�1

 !#

ðA18Þ

[138] Likewise, 231Pa‐corrected moles of 207Pb can
be calculated using the corrected 207Pb/235U date,

moles 207Pb
� �Pa

rad
¼ moles 235U

� �
spl

e�235�tPa207=235 � 1
� �

ðA19Þ

and then used to calculate the 231Pa‐corrected radio-
genic 207Pb/206Pb ratio,

207Pb
206Pb

� 	Pa

rad

¼ moles 207Pbð ÞParad
moles 206Pbð Þrad

ðA20Þ

and the 231Pa‐corrected radiogenic 207Pb/235U ratio,

207Pb
235U

� 	Pa

rad

¼ moles 207Pbð ÞParad
moles 235Uð Þspl

ðA21Þ

for Tera‐Wasserburg and conventional concordia
plots.

[139] To calculate a 231Pa‐corrected 207Pb/206Pb date,
it is not possible to solve

207Pb
206Pb

� 	Pa

rad

¼
238U
235U

� 	�1

spl

�
exp �235 � tPa207=206
� �

� 1

exp �238 � tPa207=206
� �

� 1
ðA22Þ

directly for t207/206
Pa . Instead, an iterative numerical

solution such asNewton’sMethodmust be employed.

A4. Simultaneous Th Correction and Pa
Correction

[140] Finally, the 207Pb/206Pb ratio and date may be
corrected for both 230Th and 231Pa disequilibrium
using equations (A14) and (A19).

207Pb
206Pb

� 	ThPa

rad

¼ moles 207Pbð ÞParad
moles 206Pbð ÞThrad

ðA23Þ

[141] To calculate a 230Th‐ and 231Pa‐corrected
207Pb/206Pb date, it is not possible to solve

207Pb
206Pb

� 	ThPa

rad

¼
238U
235U

� 	�1

spl

�
exp �235 � tThPa207=206

� �
� 1

exp �238 � tThPa207=206

� �
� 1

ðA24Þ

in terms of t207/206
ThPa . Instead, an iterative numerical

solution is used.

A5. Initial Common Pb Correction

[142] Following [Stacey and Kramers, 1975], for
fractions with estimated dates between 4.57 and
3.7 Ga,

206Pb
204Pb

� 	
com

¼ 7:19 � e �238�4:57�109ð Þ � e �238�tPbcð Þ
h i

þ 9:307

ðA25Þ
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207Pb
204Pb

� 	
com

¼ 7:19

137:88
� e �235 �4:57�109ð Þ � e �235 �tPbcð Þ
h i

þ 10:294

ðA26Þ

208Pb
204Pb

� 	
com

¼ 33:21 � e �232�4:57�109ð Þ � e �232�tPbcð Þ
h i

þ 29:487

ðA27Þ

and for fractions younger than 3.7 Ga,

206Pb
204Pb

� 	
com

¼ 9:74 � e �238�3:7�109ð Þ � e �238 �tPbcð Þ
h i

þ 11:152

ðA28Þ

207Pb
204Pb

� 	
com

¼ 9:74

137:88
� e �235�3:7�109ð Þ � e �235�tPbcð Þ
h i

þ 12:998

ðA29Þ

208Pb
204Pb

� 	
com

¼ 36:84 � e �232�3:7�109ð Þ � e �232�tPbcð Þ
h i

þ 31:23

ðA30Þ
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